Topological Limit Shape transitions Melting of Arctic Circles

Dimitri Gangardt,

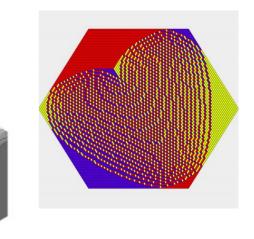
James Pallister

Alexander Abanov

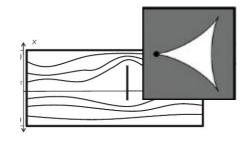
James S Pallister, DMG, Alexander G Abanov, J. Phys. A: Math. Theor. 55 304001(2022)

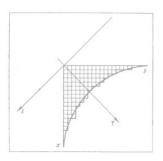
Limit Shape in Statistical Physics

Formation of a non-random shape in thermodynamic limit of random/statistical systems.



- Equilibrium Shapes of Crystals
- · Random Tilings
- · Directed Polymers
- · Random Young Tableaux



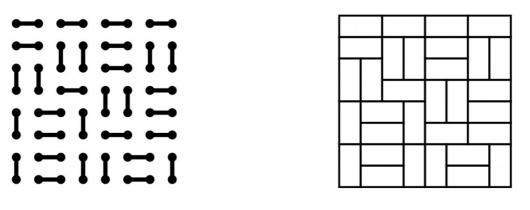


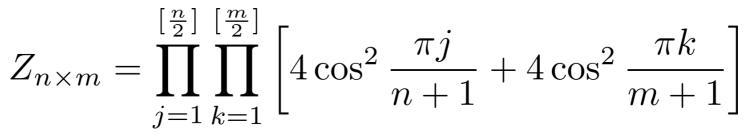
Vershik, Kerov, '77; Pokrovsky, Talapov, '78, '79; Elkies, Kuperberg, Larsen, Propp, '92; Jockusch, Propp, '98; Prahofer, Spohn; Johansson; Borodin, Gorin; Nienhuis, Hilhorst, Blote; Cohn, Kenyon, Propp; Kenyon, Okounkov; Abanov; Kenyon, Okounkov, Sheffield; Reshetikhin; Allegra, Dubail, Stephan, Viti; Colomo, Pronko, Zinn-Justin, Sportiello; Adler, Johansson, van Moerbeke; Corwin, ...

Domino tiling

Problem: In how many ways one could tile the 8 x 8 chessboard by dominos of the size 2 x 1?

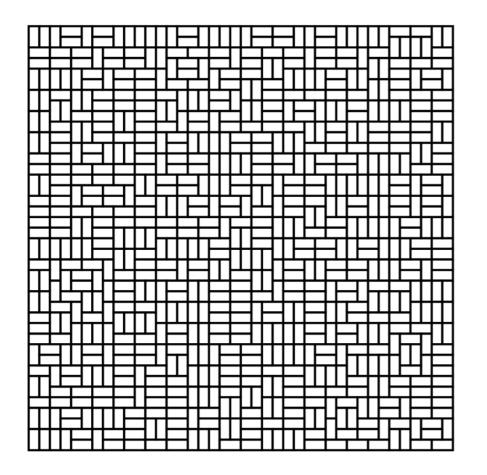
Kasteleyn, 1963





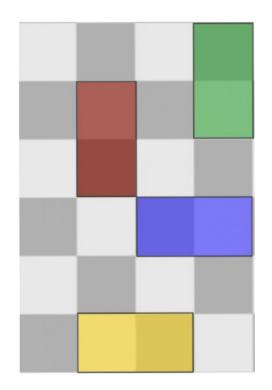
	7.06418	×	5.87939	×	4.53209	×	3.65270	
7	★ 5.87939	×	4.69459	×	3.34730	×	2.46791	= 12988816
$Z_{8 \times 8} =$	★ 4.53209	×	3.34730	×	2	×	1.12061	
Երևան 23 June 2023	★ 3.65270	×	2.46791	×	1.12061	×	0.24123	

Colored dominoes



Random tiling of 40x40 lattice (totally about 10^{197} tiling configrations)

Let's colour dominoes of different orientation and different check board content

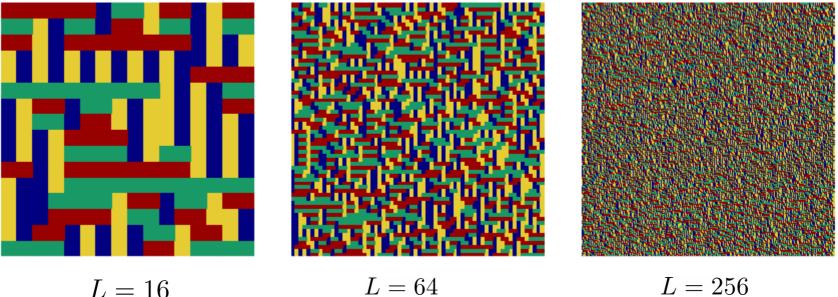


Երևան 23 June 2023

Spoiler: can be mapped onto a free fermionic model

Coloured tilings

Stephane 2020



L = 16

L = 256

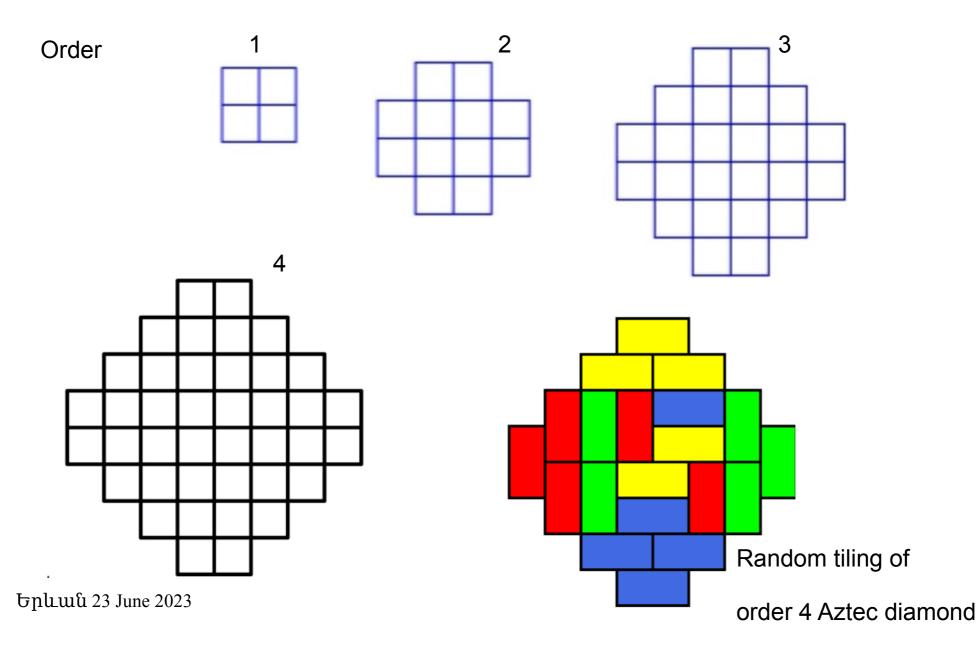
 $L \to \infty$ Themodynamic limit

Number of configurations

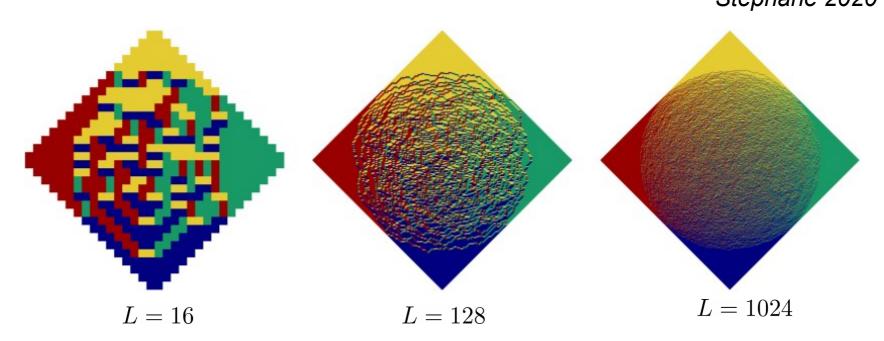
$$Z = e^{\frac{C}{\pi}L^2}$$

$$C = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} \dots \simeq 0.915965594$$

Aztec diamond



Aztec diamond in thermodynamic limit



Number of configurations

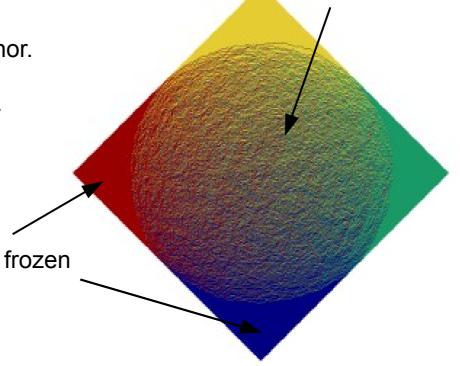
$$Z = 2^{L(L+1)/2}$$

Elkies, Kuperberg, Larsen and Propp,1992

Arctic circle theorem

liquid (fluctuating)

Jockusch, William, James Propp, and Peter Shor. *"Random domino tilings and the arctic circle theorem."* arXiv preprint math/9801068 (1998).

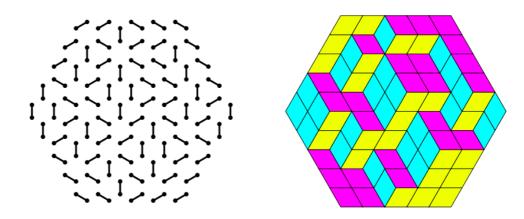


THEOREM 1 (the Arctic Circle Theorem): Fix $\epsilon > 0$. Then for all sufficiently large n, all but an ϵ fraction of the domino tilings of the Aztec diamond of order n will have a temperate zone whose boundary stays uniformly within distance ϵn of the inscribed circle.

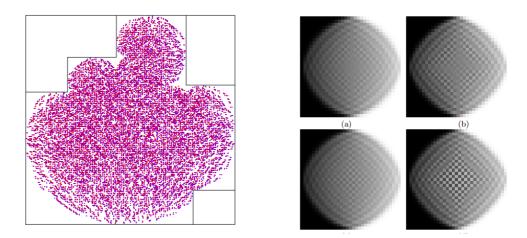
Other examples

Hexagonal lattice

Belov, Enin, Nazarov 2018



Interacting fermions (six-vertex model away from free-fermionic point)



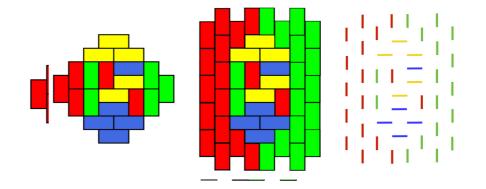
Երևան 23 June 2023

Colomo, Sportiello 2016

Syljuåsen, Zvonarev 2004

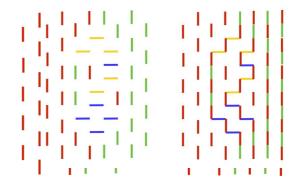
From tilings to particles

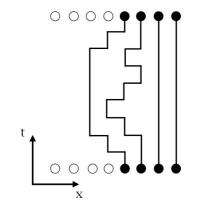
1. Convert tiles to dimers



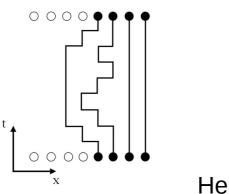
2. Superimpose obtained dimers with a reference state

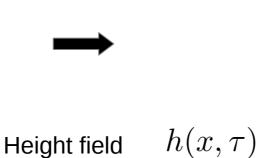
3. Obtain non-intersecting paths – world lines

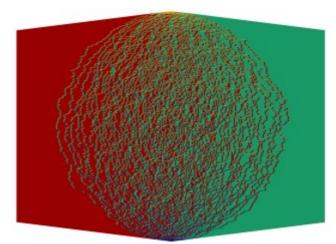




From particles to fluid







Macroscopic hydro fields:

$$\rho(x,\tau) = -\partial_x h \quad j(x,\tau) = \rho v = \partial_\tau h$$

$$\partial_\tau \rho + \partial_x j = 0$$

Hydrodynamic action

$$S[\rho, j] = \int \mathrm{d}\tau \mathrm{d}x \left(\frac{j^2}{2\rho} + E(\rho)\right)$$

Internal energy

$$E(
ho) = rac{\pi^2
ho^3}{6}$$
 - free fermions

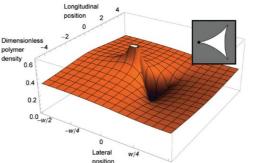
Hydrodynamics and instantons

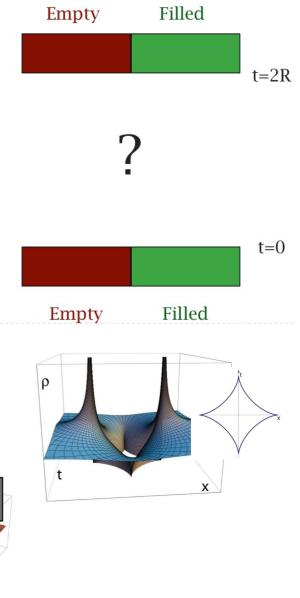
What is the optimal fluctuation of the gas in space and time so that at $\tau = 0$ and at $\tau = 2R$ the left half line is empty and the right one is filled?

 $P \sim e^{-S_{\text{inst}}[\rho,j]}$

Examples of hydrodynamic instantons:

- Arctic Circle (this talk)
- Emptiness in ground state of free fermions
- Pinned directed polymers





Equations of motion

$$\begin{array}{ll} \text{Continuity} & \partial_{\tau}\rho + \partial_{x}(\rho v) = 0\\ \text{Euler} & \partial_{\tau}v + v\partial_{x}v = \partial_{x}\frac{\pi^{2}\rho^{2}}{2} \end{array}$$

Complex Burgers

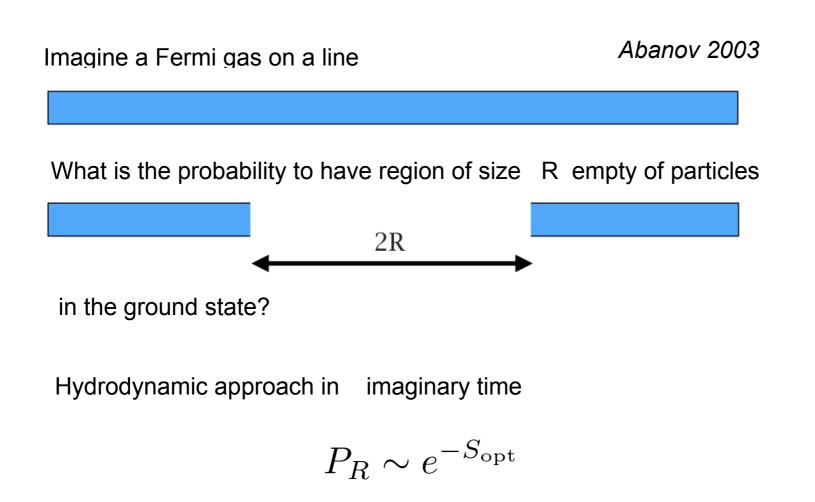
$$k, k = \pi \rho \pm \mathrm{i} v$$

 $\mathrm{i} \partial_{\tau} k + k \partial_x k = 0$

Solution - Complex characteristics $x + \mathrm{i}k\tau = g(k)$ - analytic function

For a given x, τ one can find $k, \bar{k} = \pi \rho \pm \mathrm{i} v$

Example of limiting shape in QM - emptiness formation probability

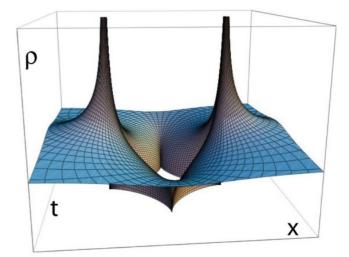


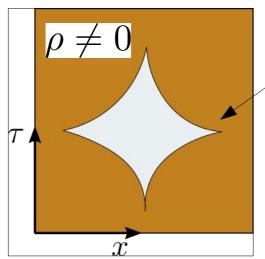
Optimal fluctuation – instanton of hydrodynamical fields

Optimal emptiness shape - astroid

$$x + ik\tau = g_{\text{empt}}(k) = \frac{k}{\sqrt{k_F^2 - k^2}}$$

 $t \sim (R-x)^{2/3}$





 $P_R \sim e^{-S_{\rm opt}}$

$$x^{2/3} + \tau^{2/3} = R^{2/3}$$

$$S_{\mathrm{opt}} = rac{1}{2} (k_F R)^2 \sim ext{ area in space-time}$$

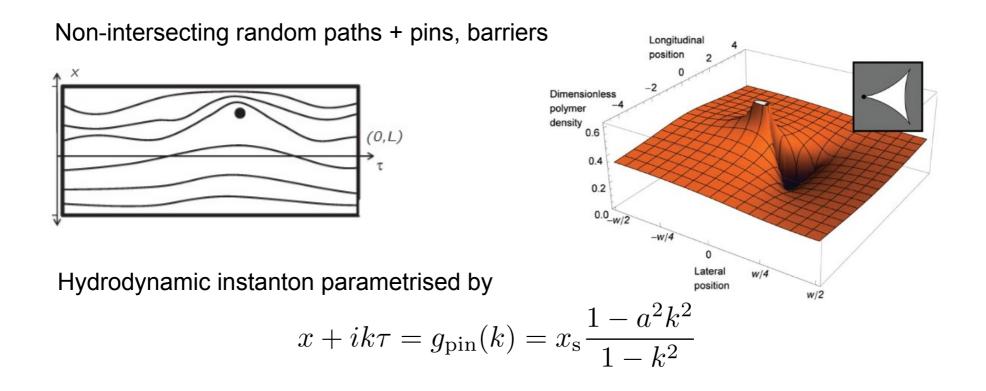
Երևան 23 June 2023

of missing particles

 $k_F R \gg 1$

Directed Polymers

D. Zeb Rocklin, Shina Tan and Paul M. Goldbart, '12



Question

How to find the analytic function g(k) = x

or the spectral curve $F_0(x,k) = 0$

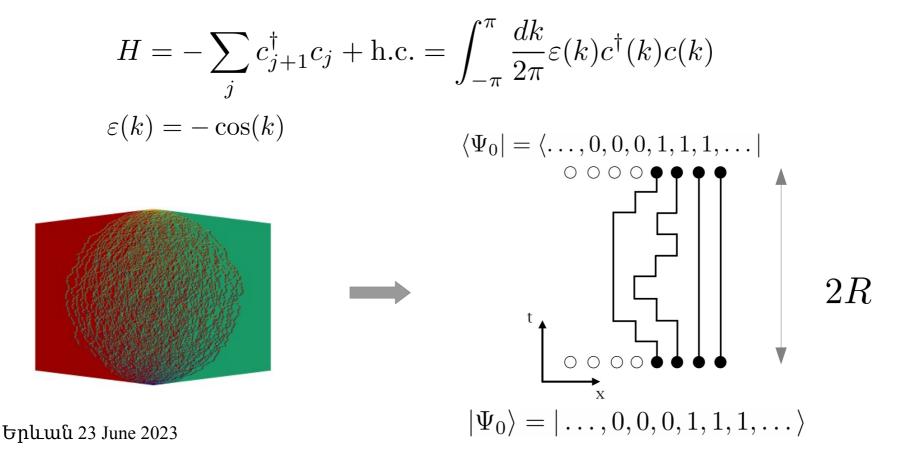
which parametrises the hydro instanton solution ?

Both functions contain information about density/velocity of particles at $\tau=0$ however the boundary conditions are imposed at $\tau=\pm R$

Back to particles - Quantum Mechanics

$$Z = \langle \Psi_0 | e^{-2RH} | \Psi_0 \rangle = \operatorname{Tr} e^{-2RH} | \Psi_0 \rangle \langle \Psi_0 |$$

Free evolution (imaginary time) with tight-binding Hamiltonian



Wick's theorem

$$Z_{N} = \langle \Psi | e^{-2RH} | \Psi \rangle \qquad \text{empty 1d lattice}$$

$$Z_{N} = \langle 0 | c_{N}(R) \dots c_{1}(R) c_{1}^{\dagger}(-R) \dots c_{N}^{\dagger}(-R) | 0 \rangle$$

$$Z_{N} = \det_{yx} \langle 0 | c_{y}(R) c_{x}^{\dagger}(-R) | 0 \rangle = \det_{yx} \int \frac{dk}{2\pi} e^{ik(x-y)-2R\varepsilon(k)}$$

$$Z_{N} = \frac{1}{N!} \int \frac{d^{N}k}{(2\pi)^{N}} |\Delta(e^{ik})|^{2} e^{-2R\sum_{l} \varepsilon(k_{l})}$$

$$\Delta(e^{ik}) = \prod_{i < j} (e^{ik_i} - e^{ik_j}) \quad \text{-Vande}$$

- Vandermonde determinant

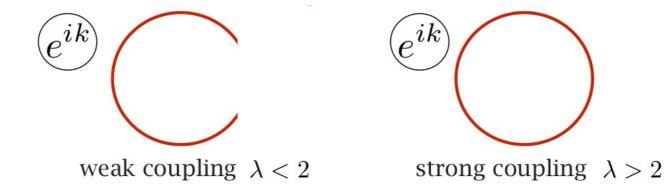
Gross-Witten-Wadia model

Gross, Witten, 1980, Wadia, 1980

Partition function for 2d U(N) lattice gauge theory was reduced to:

$$Z_N = \int dU \exp\left\{\frac{1}{\lambda} \operatorname{Tr}\left(U + U^{\dagger}\right)\right\} \qquad U = V \operatorname{diag}\left\{e^{ik_j}\right\} V^{\dagger}$$
$$= \frac{1}{N!} \int \frac{d^N k}{(2\pi)^N} |\Delta(e^{ik})|^2 e^{\frac{2N}{\lambda} \sum_l \cos(k_l)}$$

Third-order weak-strong coupling phase transition at the t'Hooft coupling $\lambda=2~$ in $~N\to\infty$ limit



Electrostatic interpretation

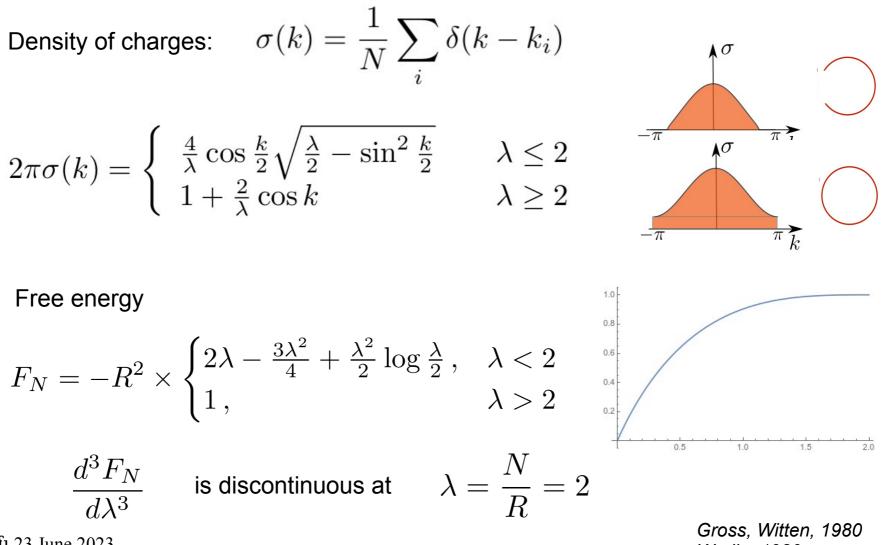
Charges on unit circle

$$Z_N = e^{-F_N} = \int d^N k \, e^{-E_N(k_1 \dots k_N)}$$

External electric field
$$\sim \frac{1}{\lambda} = \frac{R}{L}$$

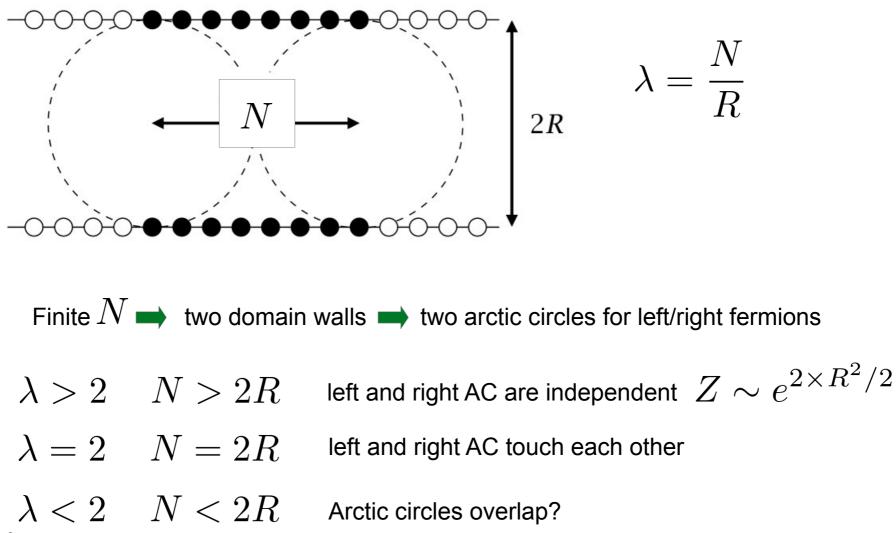
logarithmic repulsion external potential
$$E_N = -2\sum_{i < j} \ln \left| e^{ik_i} - e^{ik_j} \right| - \sum_i \frac{2N}{\lambda} \cos k_i$$

Large N solution



Wadia, 1980

Space-time picture of GWW transition



From k-space to real space

Coulomb Gas solution $\sigma(k)$ can be obtained from *loop equation*

$$F_0(\pi\lambda\sigma,k) = 0$$

Solution of the loop equation, or $x(k) = \pi \lambda \sigma(k)$ provides the desired x-k relation parametrising hydro instantons

For double arctic circle

$$F_{0}(x,k) = \left(x - \frac{\lambda}{2} - \cos k\right) \left(x + \frac{\lambda}{2} + \cos k\right) - m^{2}(\lambda)$$

$$x$$

$$\lambda = 3$$

$$\lambda_{3} = 2 \lambda = 1$$

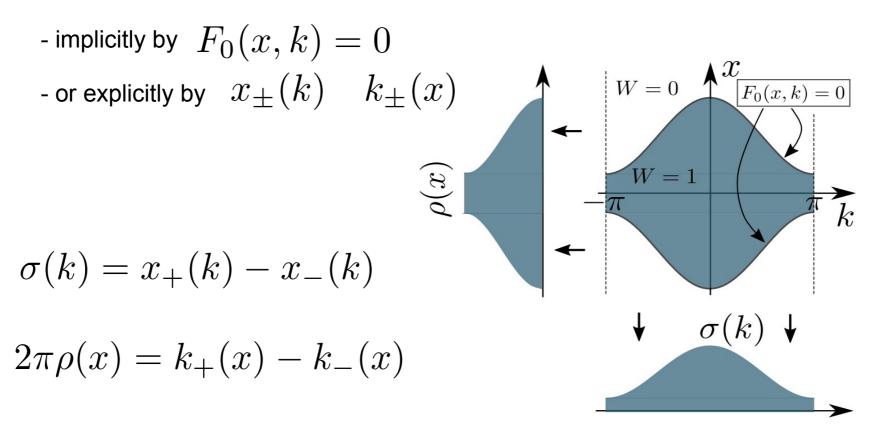
$$\lambda_{3} = 2 \lambda = 1$$

$$k$$

$$m = \begin{cases} 0, \quad \lambda > 2\\ 1 - \frac{\lambda}{2}, \quad \lambda < 2 \end{cases}$$

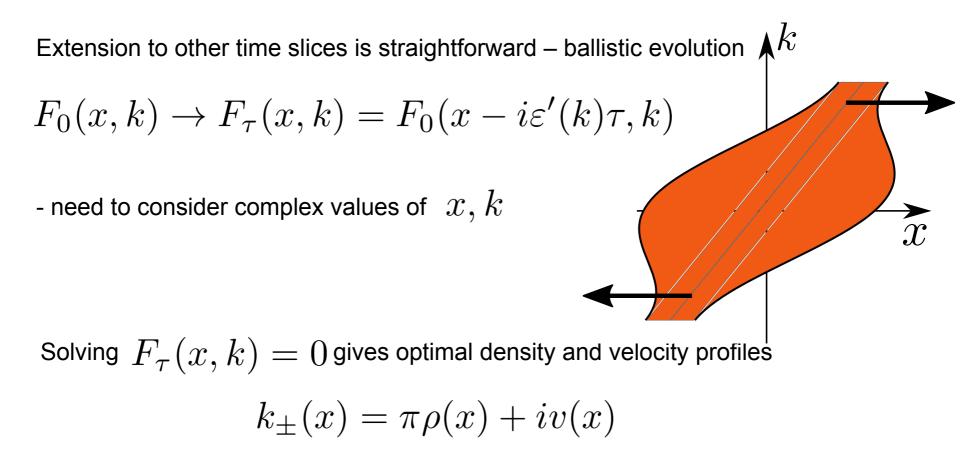
Loop equation and semiclassical Wigner function

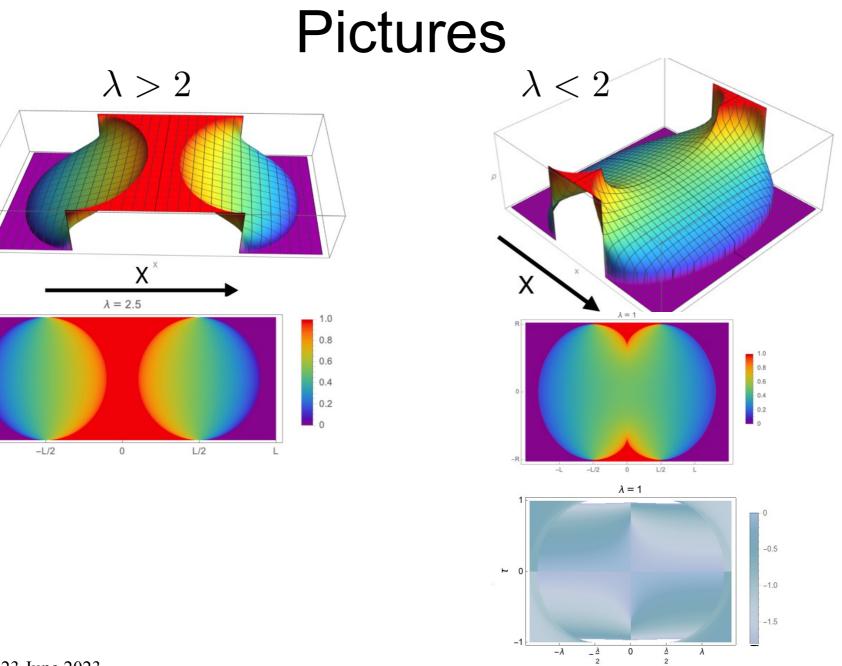
Semiclassically fermions occupy uniformly a region in the phase space. Its boundaries are given



Ballistic evolution in imaginary time

Up to now we were working on $\,\tau=0\,\,$ slice with real $\,x,k\,$ due to time-reversal symmetry





Երևան 23 June 2023

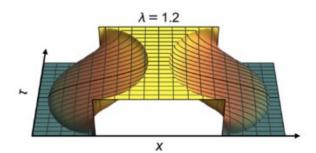
R

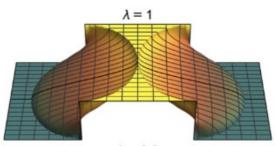
0

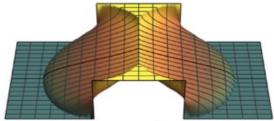
-R

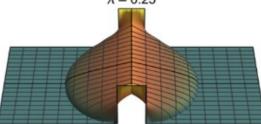
-L

Pictures









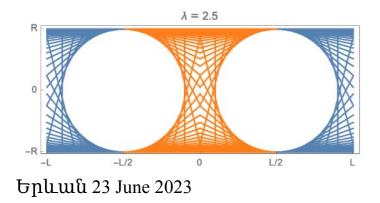
Frozen boundary

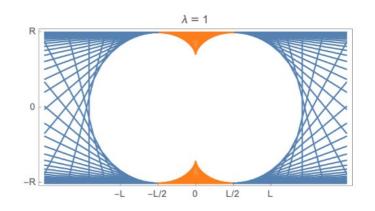
Equation $F_{\tau}(x,k) = 0$ has four solutions $k(x,\tau)$ They coalesce pairwise at $k(x,\tau) = iv(x,\tau)$, or $\pi + iv(x,\tau)$ corresponding points (x,τ) are empty/full frozen boundaries obtained from imposing additional condition

$$\partial_k F_\tau(x,k) = 0$$

Envelopes of straight line families (caustics)

$$x = G(v) \pm \tau \sinh v$$
 $\tau = G'(v)$ $G(v) = g(iv)$





Near the merger transition

Critical central region is described by universal function

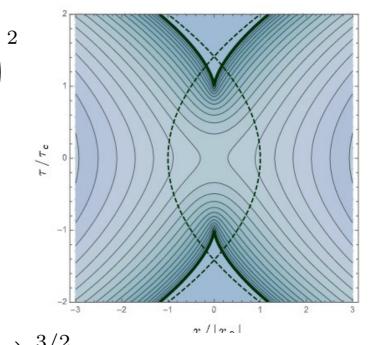
$$F_{\tau}(x,k) = (x - i\tau k)^2 + \theta(-x_0)x_0^2 - \left(x_0 + \frac{k^2}{2g}\right)$$

depending on 2 parameters x_0, g

e.g. the right boundary is

Separated phase $x_0 > 0$

$$x(\tau) = x_0 + \frac{g\tau^2}{2}$$



Merged phase
$$x_0 < x_0$$

$$0 \qquad x(\tau) = \frac{8|x_0|}{3\sqrt{6}} \left(\left| \frac{\tau}{\tau_c} \right| - 1 \right)^{3/2} \qquad 0 < \tau - \tau_c \ll \tau_c$$

$$x(\tau) = -|x_0| + \frac{g\tau^2}{2}, \qquad |\tau - \tau_c| \gg \tau_c$$
$$\tau_c = \sqrt{|x_0|/g}$$

Third order phase transition

Density of holes below transition

$$\delta\rho(0,0) = \frac{2\sqrt{g|x_0|}}{\pi}$$

Contributes to energy density (free fermions)

$$\delta E = \delta \rho^3$$

Action cost

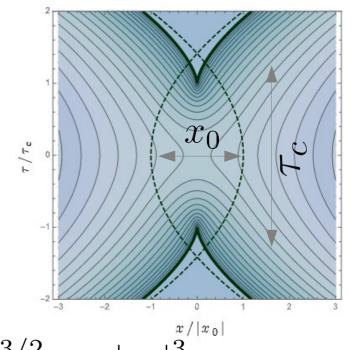
$$\delta S \sim \delta \tau \delta x \delta E = (|x_0|^{3/2} / \sqrt{g}) g^{3/2} |x_0|^{3/2} = g |x_0|^3$$

In interacting model free fermionic decription is valid for small densities!

Fluctuation length scale

$$\ell \sim g^{-1/3}$$

Երևան 23 June 2023 In GWW model (free fermions)g=1/R and $\ell=R^{1/3}$



Transitions in Real-time dynamics

Work in progress with Yasser Bezzaz

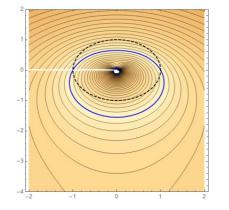
Loschmidt echo $R \to iR$ $R \to iR$ $R \to iR$ $R \gg N$ $\left| \langle N | e^{-2iRH} | N \rangle \right|^2 \sim \frac{e^{-R^2}}{R^{-N^2}}, \qquad R \gg N$

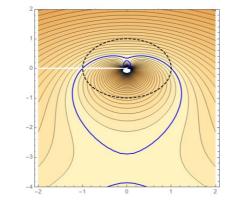
P L Krapivsky, J M Luck and K Mallick, '18

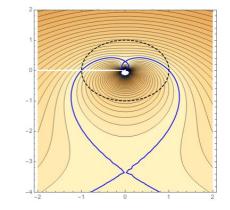
Coulomb Gas approach is still valid, but charges leave unit circle

Phase transition at critical

$$\lambda = N/R = \lambda_c \simeq 3.018\dots$$



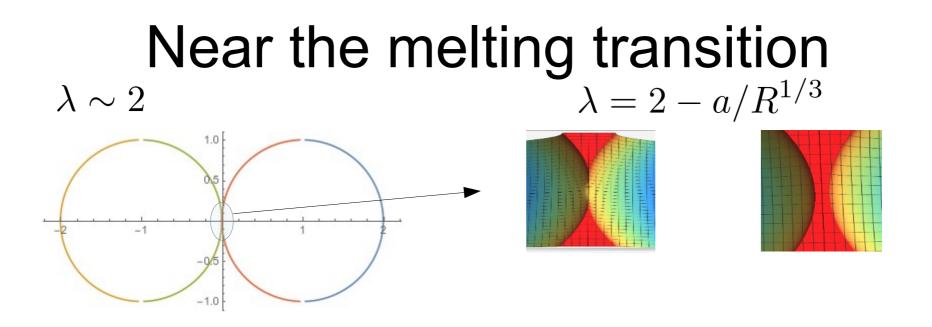




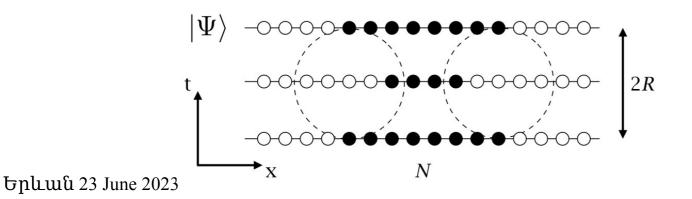
Conclusions and open problems

- Limit Shape Phenomena occur in many statistical/random problems
- We map two Arctic Circle problem onto Gross-Witten-Wadia model.
- Third order phase transition in GWW model can be interpreted as melting of the frozen region between the two Arctic Circles and their merger.
- It is conjectured that the transition is of the third order even in the presence of interactions (protected by P and T symmetries)
- More complicated dispersions
- Hydrodynamic instanton approach can be generalised to interacting models (XXZ,six vertex,...)
- Real time dynamics from au o it: Quantum Quenches, Quantum Information (projective and weak measurements), Floquet evolution and Time Crystals....

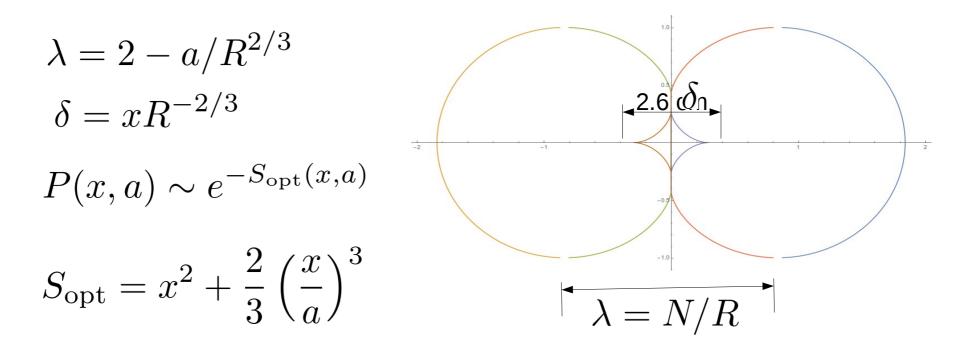
Շևորհակալություն



We calculate "fullness" or "iceberg" formation probability by considering optimal configurations with additional BC



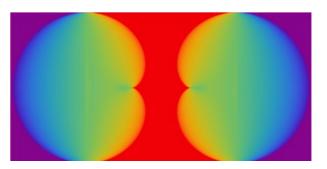
Fullness Formation Probability



Gaussian decay (fullness in the middle of fluctuating region $x \ll a$

Asymptotics of Tracy-Widom distribution

 $x \gg a$



Bethe Ansatz Solution (LL)

